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Abstract A method for the multiobjective optimization
of local-scale material topology is presented. The topol-
ogy optimization scheme is based on a constructive solid
geometry-like representation, in which convex polygons—
defined as the convex hull of arbitrary-length lists of
points—are combined using an overlapping function. This
data structure is tree-shaped and so genetic programming
is used as the optimizer. The forward problem is solved
with a multiscale finite element method with automatic
cohesive zone insertion to model damage. As a multiscale
method, loads and boundary conditions are applied and
objective functions measured at a global scale, while the
local scale material structure is optimized. The global scale
geometry is assumed fixed. Pareto optimal designs are gen-
erated, representing optimal tradeoffs between conflicting
goals: quasi-static displacement and dynamic strain energy.
Results demonstrate the efficacy of the proposed algorithm.

Keywords Topology optimization - Pareto optimization -
Genetic programming - Energy absorbing material

1 Introduction

Materials designed to absorb energy have applications in
numerous areas: crashworthiness (Mozumder et al. 2012;
Guo et al. 2011; Huang et al. 2007; Anghileri et al. 2005),
head protection (Rueda et al. 2009), impact resistance (Qiao
et al. 2008), and blast resistance (Main and Gazonas 2008;
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Qi et al. 2013). There are several ways to design an energy
absorbing material or system of materials, for example,
one could layer several different materials in a one dimen-
sional sense, while optimizing for material placement and
thickness. Another approach is to design the geometry or
topology of a bi-material system or truss structure in two
dimensions or three dimensions. In this work, we take the
latter approach, and focus on designing energy absorbing
materials at a local scale in a multiscale finite element
(FEM) setting.

Our approach to designing materials will be to optimize
the topology of a material at a local scale in two dimen-
sions, while applying loads and boundary conditions and
computing objectives at the global scale. A heterogeneous
representative volume element (RVE) (strictly two materi-
als in our case) will represent the local scale, and the global
scale will be assumed to be statistically homogenous with
material properties derived from a homogenization of the
representative volume element (RVE). At the local scale,
boundary conditions will be spatially homogenous using
linear displacements, while at the global scale, a material
sample will be fixed at one edge, with different loading con-
ditions applied depending on whether we are considering
static displacement or dynamic energy absorption. The dif-
ferent loading configurations are used to simulate possible
scenarios in which such a material would be used, either
as a structural element or an energy absorbing material for
blast-like loading. As will be discussed in more detail later,
these two loading conditions will be used as two separate
goals in a multi-objective optimization problem. There are
several options for optimizing such a configuration, the first
choice being between a simple geometry or shape optimiza-
tion method or a topology optimization method. A shape
optimization method assumes a specific topology (i.e. each
design is homeomorphic in that they must have the same
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number of shapes and holes), and parameterizes that shape
with some type of function expansion, the simplest being
a linear interpolation between a given number of vertices.
An optimization method, either local, derivative-based or
global heuristic, can then be used to solve for the defining
parameters of the shape. An example of this approach can be
found for the design of energy absorbing tubular structures
in Chiandussi and Avalle (2002).

Shape optimization is overly restrictive, however, as one
must fix the topology a priori. A popular method for topol-
ogy optimization is known as the solid isotropic material
with penalization (SIMP) method, introduced by Bendsge
(Duysinx and Bendsoe 1998; Bendsoe and Sigmund 2003).
This method uses a square grid of unknowns (pixels), where
each unknown is continuous value representing a graded
material. A local optimization method is used to determine
the optimal value of graded material at each pixel. Though
a structure consisting of graded material is the result, meth-
ods exist to regularize the final result to a single material.
Level-set methods have also been used to optimize topol-
ogy (Sethian and Wiegmann 2000), which use contours
of a higher dimensional function to represent topology in
the plane. Finally, evolutionary methods have also been
designed for topology optimization (Xie and Steven 1993,
1997).

To optimize topology, we use a constructive solid geom-
etry (CSG) representation (Requicha and Voelker 1977),
which uses Boolean operations to combine shape primitives.
While typical implementations of CSG use canonical shapes
such as rectangles and circles, we use convex polygons rep-
resented as the convex hull of an arbitrary length list of
points. This encoding can represent any physically realiz-
able (orientable) topology as a set of line segments. Though
line segments are used, their length is not restricted, so
arbitrarily small line segments can be used to approximate
curves. Genetic programming (GP), a variant of genetic
algorithms (GA) that uses a tree-based chromosome, will
be used and is a natural fit for this topology representa-
tion as CSG can be readily expressed as a tree structure.
This approach has been used in several applications includ-
ing RF microwave inverse scattering (Wildman and Weile
2007, 2010), gravitational anomaly inversion (Wildman and
Gazonas 2009), and phononic bandgap material design
(Wildman and Gazonas 2011).

The approach presented here can be compared with cur-
rent methods in two ways: geometry representation and
optimization method. Our approach offers an alternative to
the SIMP and level set methods in that it ultimately uses
a set of line segments to approximate a topology rather
than a grid (SIMP) or smooth curves (level-set). As will
be described below, multiple materials are also easily rep-
resented in this approach. Further, as automatic meshing is
used, the discretization of the topology as represented in
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the optimization method is uncoupled from the discretiza-
tion used in the forward solver. SIMP and level-set methods
typically use a local optimization method that requires gra-
dient information. The genetic programming method used
here does not require the computation of gradients and
it is well-suited for multi-objective problems as it is a
population-based method. The topology representation used
here can also be adapted to a local search methodology, as
described in Wildman and Gazonas (2009).

Previously, microstructural (or microscale) topology
optimization has been performed for different goals: max-
imum stiffness of a periodic material (Huang et al. 2013),
prescribed macroscale constitutive parameters (Sigmund
1995, 1994; Zohdi 2002; Mei and Wang 2004), and ex-
tremal microstructural properties (Allaire and Kohn 1993;
Sigmund 2000). In this paper, we focus on balancing struc-
tural stability with energy absorption in a multiobjective
setting. Typical engineering problems involve balancing
conflicting goals, using the present example, if we wish to
design an energy absorbing material and incorporate it into
an overall structure, that material may not be structurally
sound and could be unusable in our final design. We could
place constraints on the optimization problem, such as a
mass constraint, though this approach may leave out impor-
tant information that could be garnered from the Pareto
front, or set of multiobjective designs (Cohon 1978; Cohon
and Marks 1975; Steuer 1989). The goal of Pareto optimiza-
tion is to deliver a set of designs, rather than one single
design, that represent the optimal trade-offs between two or
more conflicting goals. This set of designs is Pareto opti-
mal in that no other design simultaneously outperforms it in
all goals. (The Pareto front can be defined as the boundary
between the infeasible region of designs, and the dominated
region.) Each design in the Pareto optimal set (Pareto front)
can only outperform another design in the Pareto optimal set
by at most one goal less than the total being optimized (or
one goal in a two-goal problem, two in a three-goal problem,
etc.).

While an individual design on the Pareto front may be
determined using constraints on one or more goals, the
shape of the Pareto front can provide information as well.
For example, the front’s shape may indicate areas of dimin-
ishing returns, whereby minuscule improvement in one goal
only comes at the severe detriment of another. Here, we
will optimize for two goals: a quasi-static loading problem
representing a material’s structural qualities, and a dynamic
loading problem to measure energy absorption. These goals
are conflicting because a structural material will be massive
and stiff, while an energy absorbing material tends to be soft
and compliant.

Three objectives, though only ever two simultaneously,
will be considered in a multi-objective setting: Static dis-
placement under uniaxial load, dynamic energy absorption
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space. Each chromosome i with goal vector x; is assigned a
sharing value by first finding all other chromosomes within
aradius r in goal space. The sharing value for chromosome
i is then given by

o~ xi —x)]
si=Ni=) 2)
j=1

where x; is the goal vector of chromosome j within sharing
radius r of chromosome i and N; is the number of chromo-
somes within the sharing radius. This approach is described
in more detail in Weile et al. (1996).

Finally, a single objective function value that will be
maximized can be assigned to each chromosome using its
Pareto rank and sharing value. First, all rank one chromo-
somes are given an objective function value of fl.l = 1/s;.
Next, the minimum objective function value of the rank one
chromosomes is used as the starting value for the rank two
chromosomes, i.e. now, for rank two, fi2 = ¢1/si, where
¢1 = min; fil. This process is repeated for rank three and
so on. After all chromosomes are assigned an objective
function value, standard roulette wheel selection is used.

2.2.3 Crossover

After selection, a new population is generated with an aver-
age fitness better than the previous generation. Crossover is
then used to combine traits of those surviving chromosomes
to hopefully generate even better performing chromosomes.
In a standard GA, crossover is typically performed by first
randomly choosing two chromosomes from the new popula-
tion. A gene, say g3 in Table 1, and hybridized in some way.
The genes following (g4 and g5) are then swapped between
the two chromosomes.

In GP, crossover is performed in a similar way: Two
nodes in a tree are chosen at random and hybridized if
applicable, and their subtrees are swapped. Given that our
function nodes are identical, there is no hybridization to
be done, however, if two terminal nodes are chosen, their
point lists and material properties can be hybridized. As
the point lists are of arbitrary length, they can grow with-
out bound in some situations. This is related to the issue
of tree bloat (Banzhaf et al. 1999), in which tree sizes
grow without bound as protection against harmful muta-
tions and crossover. Larger trees (or point lists) can contain
more redundant information, so that crossovers and muta-
tions with the potential to harm performance are minimized.
This can lead to population stagnation, so it is undesirable.
For point lists, we then use a two point crossover, ensuring
that the number of points exchanged between two termi-
nal nodes is equal so that each point list remains the same
length. An example of this process is shown in Table 3: The
double-horizontal lines and text in bold in the point lists

131

Table 3 Example of crossover between two terminal nodes
C D
Mat ID Mat ID
k l
X y X Yy
X0 Yo uo Vo
uy Y1 X1 »1
uz V2 X2 ¥2
us V3 X3 y3
X4 Y4 Uz v4

us V5

show the two crossover points, and the coordinates x;, y;
and u;, v; will be swapped between nodes C and D. The
crossover points are chosen at random. Additionally, the
points at the crossover locations are hybridized, i.e. mixed
together by choosing a number ¢ from a uniform random
distribution between 0 and 1 as

p" =mp+U-1)q
q =tq+ 1 -1)p, 3)

where p and q are the points at the crossover locations.
Finally, because we are using a database of material prop-
erties, we do not hybridize materials, although this is not
a restriction, as randomly generated constitutive parameters
may benefit from hybridization.

To combat tree bloat, we use a crossover probability
based on geometric similarity. Typically, the crossover prob-
ability is a constant around 80 %, and subtrees are chosen
at random between two random chromosomes. Our imple-
mentation sets a crossover probability by first selecting a
chromosome for crossover. A mate is chosen out of a pool of
random chromosomes, the size of which is an input parame-
ter, typically chosen as ten. Each chromosome in the mating
pool is assigned a probability by randomly choosing a given
number of subtrees (again, usually chosen to be at most ten)
in each and comparing their decoded geometries as

_|AlGNG) @
be A (C U Cz) ’
where A (C1) indicates the area of the topology generated
from subtree C; and s is a biasing exponent typically cho-
sen as 2.5. Consequently, if C; does not overlap C», then p,
is zero, and if C1 = C» then p. is one. Now, p. is computed
for a given number of randomly chosen subtrees of a mat-
ing pair, and the maximum is saved. After the maximum p,
is found for each mate in the pool, a mate is chosen at ran-
dom using a weighted roulette wheel with the weights given
as the crossover probabilities. In other words, we choose
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a random mate from the pool, favoring mates with higher
crossover probabilities. Crossover is then performed using
the chosen mating pair and subtrees with the maximum p..

While this scheme is somewhat convoluted, it is designed
to match similar pairs of subtrees, but with some random-
ness. Matching similar subtrees helps ensure population
convergence and randomness aids diversity. Striking a bal-
ance between the two is important in the design of a GA, so
that it can cover a large search space and resolve fine details
simultaneously. These issues are not present with a fixed
length chromosome representation as we know a priori the
function of each gene in a chromosome, thus ensuring that
crossover is meaningful.

2.2.4 Mutation

The final genetic operator, mutation, is used to inject new
genetic information into a population, preventing prema-
ture convergence or stagnation. In our implementation, the
flexibility in the chromosome allows for a large number
of options for mutation. We can, on one hand, manipulate
solely the encoded chromosome (tree structure with point
lists at the terminal nodes) and on the other hand, adjust the
decoded topology. The mutation rates for the examples in
Section 4 are constant throughout, so they are listed here.

First, single points from terminal node point lists are
deleted with a given probability. This rate can be set some-
what high (for mutation rates) as terminal nodes tend to
grow in length for reasons discussed earlier. Here we use
a point deletion rate of 2 % per point. There is a mini-
mum length for terminal nodes of three, as three points are
required for a 2D simplex. We also duplicate points in a ter-
minal node with a 0.5 % rate per point. New points are first
duplicated then shifted by a random amount according to
a Gaussian distribution with standard deviation of 10 % of
the largest dimension of the design bounds (20 mm in all
examples from Section 4).

Points are also added by splitting existing convex hull
segments. First, a terminal node is decoded by taking its
convex hull. Next, for each line segment in the hull, we ran-
domly insert a new point at a random location between 10 %
and 90 % of its length. This mutation is performed with a
rate of 0.5 % per segment.

In a mutation most analogous to a standard GA, points
are shifted by a random amount. The shift amount is chosen
from a Gaussian distribution with zero mean and standard
deviation of 10 % of the region size (as above for point
duplication), and the mutation rate is 1 % per point.

One issue with the above point mutation method is that
a non-coding point (a point not on a convex hull) can
be moved to another non-coding position, meaning that
ultimately the mutation had no effect on the decoded topol-
ogy. A convex hull aware point mutation was designed to
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remedy this situation. Given a point p inside a convex
hull, the closest segment on the hull is found. Two vec-
tors are formed pointing from the point inside the hull, to
the two points q; and qp defining the closest segment. The
point inside the hull is then moved inside the parallelogram
formed by the addition of these vectors as

p'=ri(qi—p) +r2(q2—p) +p. (5)

where r| and r, are two random values from a uniform dis-
tribution between 0 and 1. This mutation then has a 50 %
probability of altering the convex hull and is used with an
overall rate of 1 % per point.

Points are also deleted by pruning non-coding points that
are inside a point set’s convex hull. As an extreme example,
a point list may contain hundreds of points, but only three
actually on the convex hull that defines its decoded shape.
These redundant points can be harmful to a population’s
progress, and so they can be pruned. Points to be pruned are
chosen by first computing the convex hull of the point list
and scaling it by a random amount between 0.4 and 0.8. All
points within this scaled convex polygon are removed from
the point list. This mutation is performed at a rate of 5 %
per terminal node.

We can also apply affine transformations to the terminal
node point lists, effectively altering the overall geometry.
Here, we separately apply scaling, rotation, or translation
mutations with a rate of 1 % per terminal node. If a node is
chosen for affine transformation, scaling, rotation, or trans-
lation is chosen at random with equal probability. Each
transformation has its defining parameter chosen from a
Gaussian distribution: Scaling uses a mean value of 1 and
a standard deviation of 0.1, rotation uses a mean of 0 and
standard deviation of 7/10, and translation uses a mean of
zero and standard deviation of 10 % of the region size for
both coordinates.

Material properties can also be mutated. Here we use a
database of materials and so, with a given probability of
1 % per terminal node, we simply choose a new material at
random from the database.

Finally, we can alter the tree structure of a chromosome.
The first type of tree mutation is standard in GP, subtree
deletion and regrowth. In this mutation, a subtree is deleted
and replaced with a randomly generated subtree with a given
probability. This type of mutation can be destructive so it
is applied with a low probability of 0.5 % to each node in
a tree. Another way of altering the tree structure is to split
terminal nodes into a function node with two new terminal
nodes. There are a few ways of accomplishing this, first,
we can simply split a terminal node’s point list at an arbi-
trary point and separate it into two new nodes. Next, we can
separate points internal to a list’s convex hull, much like
the pruning operation described above. Here, we again scale
down the convex hull of a point list, and separate points
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Fig. 10 Algorithm flow chart For all
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and y directions along the y = 0 edge. The size of the RVE
is 20 mm-by-20 mm and the problem is plane stress. We
apply a load in the —y direction with a value of 2 Pa along
the top edge of the structure. The goal of the optimization
problem is to minimize the displacement along the load-
ing area, so the objective function is simply the sum of the
displacement along the top edge:

D= / u(x, T)dx, (6)
r

200 mm

Y

N

Fig. 11 Static loading problem

where u is the displacement, T is the time at the final time
step, and I" is the boundary where loading is applied at the
global scale. Without the inclusion of damage, the prob-
lem is linear so the magnitude of the load is not important
because it will be normalized in the objective function. With
damage, we use total time of 0.1 s with 200 steps in a quasi-
static solver. Another goal used in the static loading case
will be total mass of a local scale RVE:

m = / p (x)dA, (N
Q)

where 2] represents the local scale region, and p is the

density.

3.2.2 Dynamic loading

The setup of the dynamic problem (shown in Fig. 12) is

similar to that of the static problem, though we apply a hor-

izontal load along the x = 0 and x = 200mm edges as well

and with a pressure-time history shown in Fig. 13. Here,
we use a time step size of 1 us over a total of 300 us. The
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Fig. 12 Dynamic loading problem

objective function is the strain energy at the global scale,
summed over the entire run time, as

1 T
g1 / / oij (%, ) €i; (x, 1) dAdt, ®)
2Jo Ja,

where o is the stress tensor, € is the strain tensor, 2 is
the global scale region, and Einstein summation is assumed.
This objective will be maximized as we seek a design
that absorbs energy. It represents a conflicting goal with
the static loading problem, and so we must solve in a
Pareto-optimal sense.

4 Results

In this section, results of the optimization are presented.
Several design cases are presented, each with the same
material system, (a dense, stiff linear elastic material and
void), though with varying damage models. To summarize,
first, in Subsection 4.1, a baseline linear elastic model at
the local scale with no damage modeling is given. Next, in
Subsection 4.2, we consider the same linear elastic material,

600

500,

400,

300

Pressure (MPa)

200,

100

0 50 100 150 200 250 300
Time (us)

Fig. 13 Pressure load for the dynamic problem
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but allow damage in the form of cohesive zone inser-
tion at the local scale only. Finally, in Subsection 4.3, the
same local scale model (linear elastic with cohesive zone
insertion) is used, but global scale damage is considered
using XFEM and a multiscale localization method described
below. In each case, we will use two objectives, forming a
generic goal vector as:

f=1[/f1. f2], ®

with f; and f> being one of the objectives defined above,
U,D, orm.

In addition, each example was run twice (with differ-
ent seeds for the random number generator) and compared
to demonstrate stability of the stochastic method. As this
is a multiobjective optimization that does not iteratively
step through one design goal as a constraint, any compar-
ison between optimization results must consider the curve
of the approximate Pareto fronts. To that end, we define
the difference in results as the integral of the difference
in approximate Pareto fronts, using a linear interpolation
between rank-one chromosomes, given by the piece-wise
parameterization

FO)y=m—t+Dfi+¢ -y, n<t<n+1 (10

where n = 1,..., Ny and N; is the number of rank-one
designs. While the results from two runs may have different
values of Ny and different spacings between all fi, (10) can
nonetheless be converted from a parametric form as, by def-
inition of Pareto optimality, it can be defined as a function.
Given a suitable mapping to a function g (x), a relative error
measure can then be defined as

fl,max

h |ga (x) — gb (x)| dx
I 18 @)l dx [ gy ()] dx

where f max = min (max f, 1, max fp,1) is the minimum
of the maximum values of goal f| of both runs, f, 1 is the
first goal of one run and corresponds to function g,, and fp 1
and gy, represent a second run. In practice, the two functions
are simply discretized on an even, fine grid and the integral
is computed numerically.

Error, p :=

. (D

4.1 Linear elastic

The first results use a linear elastic material in the RVE,
with Young’s modulus 65 GPa, Poisson’s ratio 0.2, and den-
sity 2235 kg/m>. The remaining material was assumed to
be void. The global scale geometry is given in Figs. 11
and 12, with loads and boundary conditions as discussed in
Subsections 3.2.2 and 3.2.1. Here, the goal vector is given as

r=[p-§

U], (12)

and we wish to minimize fj and maximize f>.
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that it may be possible to forgo the use of XFEM for this
design study.

5 Conclusions

A method for the multiobjective design of energy absorb-
ing materials was presented that uses a GP-based topology
optimization method and a multiscale FEM code. Topology
was represented using a CSG-like approach, where convex
polygons defined by the convex hulls of lists of points were
used as primitives and combined with an overlapping func-
tion. This approach is flexible in that convex polygons with
any number of sides can be combined together generating
complicated topologies. Material properties are embedded
in the convex polygons as well. A commercially available
multiscale FEM code was used that models damage using
automatic insertion of cohesive zone elements at the local
scale and XFEM at the global scale. Pareto optimal designs
were generated for several different cases, including quasi-
static and dynamic loadings, with and without local scale
cohesive zone insertion, and with and without global scale
XFEM insertion.

Future work includes extending the algorithm to 3D
designs. The method is easily implemented in 3D as all
concepts—convex hulls and CSG-are equally valid in 3D.
We also plan to incorporate a hierarchical design scheme,
where the global structure is optimized along with the
local structure. This can be done again with a homogenous
assumption of global scale material properties, or we could
enable multiple local scale designs that can be used at the
global scale.
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